Introduction to POL 217

Brad Jones

1Department of Political Science
University of California, Davis

January 9, 2007
Course Topics
Course Requirements
Preliminary Material
Topics of Course

▶ Models for Categorical Data.
Topics of Course

- Models for Categorical Data.
- Models for Events Data.
Topics of Course

- Models for Categorical Data.
- Models for Events Data.
- There is a close connection.
Several Applied Problem Sets (50 percent).
Course Requirements

- Several Applied Problem Sets (50 percent).
- One Take-Home Exam . . .
Several Applied Problem Sets (50 percent).

One Take-Home Exam …

or Paper and Presentation (40 percent).
Course Requirements

- Several Applied Problem Sets (50 percent).
- One Take-Home Exam . . .
- or Paper and Presentation (40 percent).
- Participation beyond Breathing (10 percent).
Pros and Cons

- Exams may help prepare for comprehensives.
Pros and Cons

- Exams may help prepare for comprehensives.
- Exams don’t (usually) result in articles.
Pros and Cons

▶ Exams may help prepare for comprehensives.
▶ Exams don’t (usually) result in articles.
▶ ...though all of you will need to discuss quantitative work.
Categorical Response Variables

- Binary (logit or probit).
Categorical Response Variables

- Binary (logit or probit).
- Ordinal (proportional odds/cumulative probit).
Categorical Response Variables

- Binary (logit or probit).
- Ordinal (proportional odds/cumulative probit).
- Nominal (baseline category logit).
Categorical Response Variables

- Binary (logit or probit).
- Ordinal (proportional odds/cumulative probit).
- Nominal (baseline category logit).
- (We’ll worry about events data in a few weeks).
Why Logit or Probit?

▶ Suppose y is binary.
Why Logit or Probit?

- Suppose y is binary.
- Regression assumes y is unbounded and continuous.
Why Logit or Probit?

- Suppose y is binary.
- Regression assumes y is unbounded and continuous.
- Hence, $y = \beta_0 + \beta x + \epsilon$.
Why Logit or Probit?

- Suppose y is binary.
- Regression assumes y is unbounded and continuous.
- Hence, $y = \beta_0 + \beta x + \epsilon$.
- $\therefore \hat{y}$ must be unbounded.
Why Logit or Probit?

- Suppose y is binary.
- Regression assumes y is unbounded and continuous.
- Hence, $y = \beta_0 + \beta x + \epsilon$.
- $\therefore \hat{y}$ must be unbounded.
- Linear change in $E(y) \mid x$ not natural.
Why Logit or Probit?

- Suppose y is binary.
- Regression assumes y is unbounded and continuous.
- Hence, $y = \beta_0 + \beta X + \epsilon$.
- $\therefore \hat{y}$ must be unbounded.
- Linear change in $E(y) \mid x$ not natural.

\[
\begin{align*}
P(y = 1) &= P_i \\
P(y = 0) &= (1 - P_i) = Q_i \\
E(y) &= P_i(1) + Q_i(0) \\
E(y) &= P_i(1)
\end{align*}
\]
Why Logit or Probit?

▶ More Trouble.
Why Logit or Probit?

- More Trouble.
- \(\hat{\epsilon} = y_i - \sum \hat{\beta}_k x_i. \)
Why Logit or Probit?

- More Trouble.
- \(\hat{e} = y_i - \sum \hat{\beta}_k x_i \).

\[
\begin{align*}
 y &= 1 : 1 - \sum \hat{\beta}_k x_i \\
 y &= 0 : 0 - \sum \hat{\beta}_k x_i
\end{align*}
\]
Why Logit or Probit?

- More Trouble.
- \(\hat{\epsilon} = y_i - \sum \hat{\beta}_k x_i \).

\[
\begin{align*}
y = 1 : & \quad 1 - \sum \hat{\beta}_k x_i \\
y = 0 : & \quad 0 - \sum \hat{\beta}_k x_i
\end{align*}
\]

- \(\forall x_i, \epsilon \) assumes two values.
Why Logit or Probit?

→ Heteroskedasticity
Why Logit or Probit?

- Heteroskedasticity
- \(E(y) = \sum \hat{\beta}_k x_i = P_i \) and \(1 - \sum \hat{\beta}_k x_i = Q_i \)
Why Logit or Probit?

- Heteroskedasticity

\[E(y) = \sum \hat{\beta}_k x_i = P_i \text{ and } 1 - \sum \hat{\beta}_k x_i = Q_i \]

- Noting (without proof) that

\[\text{var}(\epsilon) = (1 - \sum \hat{\beta}_k x_i)^2 P_i + (\sum \hat{\beta}_k x_i)^2 Q_i \]

\[\therefore \]

\[\text{var}(\epsilon) = (Q_i)^2 P_i + (-P_i)^2 Q_i \]

\[= Q_i P_i (Q_i P_i) \]

\[= Q_i P_i ([1 - P_i] + P_i) \]

\[= Q_i P_i \]

\[= (1 - \sum \hat{\beta}_k x_i)(\sum \hat{\beta}_k x_i) \]
Motivating Logit (or Probit)

Suppose $E(y) = P(y = 1 \mid x) = \beta_k x_{ik}$, and y is binary.

$$
Pr(y = 1 \mid x) = \frac{1}{1 + \exp(-\sum \beta_k x_{ik})}
$$

This is the c.d.f. for the logistic distribution.

Problems Solved:
- Z is unbounded;
- P_i must stay in unit interval.
- P_i is nonlinearly related to parameters (though logit is linear!)
Suppose $E(y) = P(y = 1 \mid x) = \beta_k x_{ik}$, and y is binary.

$$
Pr(y = 1 \mid x) = \frac{1}{1 + \exp(-\sum \beta_k x_{ik})}
$$

Let $Z = \sum \beta_k x_{ik}$, then

$$
Pr(y = 1 \mid x) = \frac{1}{1 + \exp(-Z)} = \frac{\exp(Z)}{1 + \exp(Z)}
$$
Motivating Logit (or Probit)

Suppose $E(y) = P(y = 1 \mid x) = \beta_k x_{ik}$, and y is binary.

$$
Pr(y = 1 \mid x) = \frac{1}{1 + \exp(-\sum \beta_k x_{ik})}
$$

Let $Z = \sum \beta_k x_{ik}$, then

$$
Pr(y = 1 \mid x) = \frac{1}{1 + \exp(-Z)} = \frac{\exp(Z)}{1 + \exp(Z)}
$$

This is the c.d.f. for the logistic distribution.
Motivating Logit (or Probit)

- Suppose $E(y) = P(y = 1 \mid x) = \beta_k x_{ik}$, and y is binary.

\[
Pr(y = 1 \mid x) = \frac{1}{1 + \exp(-\sum \beta_k x_{ik})}
\]

- Let $Z = \sum \beta_k x_{ik}$, then

\[
Pr(y = 1 \mid x) = \frac{1}{1 + \exp(-Z)} = \frac{\exp(Z)}{1 + \exp(Z)}
\]

- This is the c.d.f. for the logistic distribution.

- Problems Solved:

 Z is unbounded; P_i must stay in unit interval.

 P_i is nonlinearly related to parameters (though logit is linear!)
Logit Model

Odds Ratios are given by $P_i/(1 - P_i) = \exp(Z)$
Logit Model

- Odds Ratios are given by $P_i/(1 - P_i) = \exp(Z)$
- Log-odds are then $\log[P_i/(1 - P_i)] = Z$
Odds Ratios are given by \(\frac{P_i}{1 - P_i} = \exp(Z) \)

Log-odds are then \(\log\left[\frac{P_i}{1 - P_i}\right] = Z \)

The Logit Model

\[
\log \frac{P_i}{1 - P_i} = Z = \sum \beta_k x_{ik}
\]

This is the logit transformation and yields the logit model.

Again, \(Z \) unbounded; perfect prediction impossible.
Logit Model

- Odds Ratios are given by \(P_i / (1 - P_i) = \exp(Z) \)
- Log-odds are then \(\log[P_i / (1 - P_i)] = Z \)
- The Logit Model

\[
\log \frac{P_i}{1 - P_i} = Z = \sum \beta_k x_{ik}
\]

- This is the logit transformation and yields the logit model.
Odds Ratios are given by \(P_i/(1 - P_i) = \exp(Z) \)

Log-odds are then \(\log[P_i/(1 - P_i)] = Z \)

The Logit Model

\[
\log \frac{P_i}{1 - P_i} = Z = \sum \beta_k x_{ik}
\]

This is the *logit transformation* and yields the logit model.

Again, \(Z \) unbounded; perfect prediction impossible.