Logit and Probit

Brad Jones¹

¹Department of Political Science
University of California, Davis

April 21, 2009
Today: Binary Response Models
Logit, redux

- Logit resolves the functional form problem (in terms of the response function in the probabilities).
- Note that in the probabilities, logit is a non-linear model.
- Suppose $E(y) = P(y = 1 \mid x) = \beta_k x_{ik}$, and y is binary.

$$
Pr(y = 1 \mid x) = \frac{1}{1 + \exp(-\sum \beta_k x_{ik})}
$$

- Let $Z = \sum \beta_k x_{ik}$, then

$$
Pr(y = 1 \mid x) = \frac{1}{1 + \exp(-Z)} = \frac{\exp(Z)}{1 + \exp(Z)}
$$

- This is the c.d.f. for the logistic distribution.
- Problems Solved:
 - Z is unbounded; P_i must stay in unit interval.
 - P_i is nonlinearly related to parameters (though logit is linear!)
 - Prediction of “1” or “0” impossible.
The Probit Model

- Often will be similar to binary logit.
- Derived from binomial family.
- But CDF is derived from normal distribution.
- And it looks a little something like this:

\[
F(x) = \Pr(y = 1 \mid x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2} x^2 \right) \, dx \quad (1)
\]

- You’ve seen this before: it’s the CDF for the standard normal.
- \(\Pr(y = 1) \) is symmetrical about .50 (same is true for logit).
- Quick Fit
Predicted Probabilities from Logit (blue) and Probit (red)
Comparisons

- Immediately we see several things.
- The coefficients are not “directly comparable.”
- Why? They are scaled differently.
- However, signs and significance are identical (this is typical).
- In the probabilities, the models are virtually indistinguishable.
- For many problems (esp. in social sciences), this result is generally true.
- Logit has “fatter” tails.
- Note also the probabilities are symmetrical about .5.
Predicted Probabilities from Logit (blue) and Probit (red)
The probit probabilities are nonlinear in x.

We see this in the figures.

The model we estimate, however, is a linear model.

How do we get to it?

Under probit we have:

$$\Pr(y = 1 \mid x) = F(x\beta) = \Phi(x\beta) \quad (2)$$

Φ is the cdf for the standard normal.

For a given covariate profile, this function gives you the probability area in the standard normal distribution.

When you looked up z-scores, you were doing the same basic thing.

We still don’t have a model.
Probit: The Details

Again, the probabilities are nonlinear functions of $x\beta$.

We can linearize this.

As probabilities:
$$Pr(y = 1 \mid x) = \Phi \sum \hat{\beta}_k x_{ik}$$

(Yes, still nonlinear)

Suppose we take the inverse of Φ?

$$\Phi^{-1}(p_i) = \sum \hat{\beta}_k x_{ik} \tag{3}$$

We obtain a linear model.

This is the **probit model**.

As with logit, the coefficients are *not* scaled as probabilities.

Here, they are scaled in terms of the inverse of the standard normal distribution.
Probit: The Details

- We don’t usually think in terms of this scale.
- However, the signs are informative (like log-odds).
- As x increases, we move up the probit scale.
- The likelihood of responding “1” concomitantly increase.
- There is no odds ratio interpretation here.
- Since we know the probability function, all we need to do to derive $\Pr(y = 1)$ is to compute the linear prediction and find the corresponding probability.
- Illustration
Probit: The Details

- Model from before:
 \[\Phi^{-1}(p_i) = .0189 + 3.0568x_i \]

- Suppose \(x_i = \bar{x} = .01 \).
- Linear Prediction: \(.0189 + 3.0568 \times .01 = .05 \)
- Probability: \(\Phi .05 = .52 \).
- How’d I do that??
- The “hard” way.
Probit: The Details

- You see, the linear prediction from a probit model is ...
- a z-score.
- If you’ve got a z-table and a linear prediction, you can get your probabilities.
- If you have a computer, you can do this too.
- Many ways in R. My way (using VGAM library): `probit(.05, inverse=TRUE)` which returns: 0.52.
- In Stata: `display normal(.05)` which returns 0.51993881.
- This is all really hard, isn’t it?
- Multiple covariates means you’ll account for more terms in the linear prediction.
- Appreciably no different from logit.
Logit comparison

- Logit model (in log-odds): \(0.033 + 5.094x_i\)
- Linear prediction at mean of \(x_i\): 0.084
- Probability: \(e^{0.084}/(1 + e^{0.084}) = 0.52\)
- Equivalency: \(1/(1 + e^{-0.084}) = 0.52\)
- How’d I do that?
 - Utilize the cdf for the logistic distribution.
 - Distribution function differs from probit; probabilities are identical.
 - Either way, probabilities are easy to compute.
 - Just make sure you’re computing probabilities for reasonable profiles.
 - Nonsensical profiles = nonsensical probabilities.
Interpretation: Extended Illustration

- Data: California Field Poll (Feb. 2006)
- Response Variable: “Would you support creating a temporary worker program in Ca.?”
- Covariates: Party affiliation (-1,0,1); Education Level (1-10); Income Level (1-5); Latino origin (1,0)
- First estimate logit.
Logit Results from California Field Poll Data

| | Estimate | Std. Error | z value | Pr(>|z|) |
|----------------|----------|------------|---------|----------|
| (Intercept) | 0.1620 | 0.3645 | 0.44 | 0.6568 |
| pid | 0.3900 | 0.1453 | 2.68 | 0.0073 |
| education | -0.0367 | 0.0521 | -0.71 | 0.4804 |
| income | 0.1668 | 0.0905 | 1.84 | 0.0653 |
| latino | 1.3348 | 0.3023 | 4.42 | 0.0000 |
Interpretation: Extended Illustration

- Signs? Related to log-odds ratios.
- Hypothesis testing: z-ratio is $\hat{\beta}/s.e.(\hat{\beta})$.
- 95 percent confidence interval approximately $\hat{\beta} - 1.96(s.e.)$
- Usual rules apply (and usual caveats).
- I advise against using stars. Why?
- Turn to interpretation
Interpreting the Model

- Consider probabilities first.
- Useful to compute tables of probabilities.
- e.g. what is $\Pr(y = 1 \mid \text{profile})$?
- Non-latino, low-education, low-income, Republican?
 - $x_1 = -1, x_2 = 3, x_3 = 1, x_4 = 0$
 - $\Pr(y = 1 \mid Z) = .46$
- Same scenario, but for a Democrat?
 - $\Pr(y = 1 \mid Z) = .65$
- Almost a .20 difference attributable to partisanship.
- But be careful.
You can imagine there are a lot of probabilities you could compute.

Specifically, $10 \times 5 \times 3 \times 2 = 300$. Not all profiles exist, however!

You could graph them as well. Consider income.

$Pr(y = 1)$ given a non-Latino Republican having mean-level education.

Let income assume each value and then plot it.
Predicted Probabilities for Income

Pr(y=1)

Income Level
You could overlay different probability scenarios on the graph.

Marginal changes in \(\Pr(y) \) are another way to interpret the model.

For logit:

\[
\frac{\partial \Pr(y = 1 \mid x)}{\partial x_k} = \frac{\exp(x \beta)}{[1 + \exp(x \beta)]^2} \beta_k
\]

\[
= \Pr(y = 1 \mid x)[1 - \Pr(y = 1 \mid x)]\beta_k
\]

Analogy to regression: the marginal change is just \(\beta \).

Here, quantity of interest (probability) is nonlinear in \(x \).

Interpretation? It’s the slope of the probability curve holding all other variables constant at some value.
In probit, marginal change is given by:

\[
\frac{\partial \Pr(y = 1 \mid x)}{\partial x_k} = \phi(x \beta) \beta_k
\]

(5)

Same kind of interpretation is forthcoming from it.
These are easy quantities to derive. If you use Stata, spost will help you out here.
But if we can compute probabilities (which we just have!), we can compute marginal effects.
Computing the marginal effects at means is sometimes useful.
Odds Ratios

- In logit, odds ratios may be useful.
- The odds ratio is just $\exp(\beta_k)$.
- For a binary covariate, the interpretation is simple.
- Consider Latino origin variable. Coefficient is 1.335.
- Odds ratio? $\exp(1.335 \times 1) = 3.8$.
- Interpretation: respondents of Latino origin are nearly 4 times more likely to claim support for temporary worker program than when compared to non-Latino origin respondents.
- Nice interpretation.
Odds Ratios

- Continuous variables
- Odds are proportional between adjacent categories.
- Percentage change in odds:

\[
\% \Delta \frac{p_i}{1 - p_i} = \left[\frac{\exp(\beta_k x) - \exp(\beta_k x')}{\exp(\beta_k x')} \right] \times 100
\]

\[(6) \]

- For income covariate, the odds ratio when income=5 is: 2.3
- For income=4, odds ratio is: 1.9
- Change in odds of moving from category 4 to 5? About 18 percent.
- For binary covariates, this is simple to compute.
- Odds for Latinos: 3.8; percentage change?
- \((3.8 - 1)/1 = 2.8\) (or about 280 percent).
Consider probit model on same data.

- Coefficients will be in “z-score” metric.
- Signage should be the same.
- As should significance.
- Only exceptions would be when extreme probabilities are of interest.
Probit Results from California Field Poll Data

| | Estimate | Std. Error | z value | Pr(>|z|) |
|----------------|----------|------------|---------|----------|
| (Intercept) | 0.1358 | 0.2184 | 0.62 | 0.5340 |
| pid | 0.2333 | 0.0871 | 2.68 | 0.0074 |
| education | −0.0239 | 0.0310 | −0.77 | 0.4411 |
| income | 0.0955 | 0.0540 | 1.77 | 0.0771 |
| latino | 0.7629 | 0.1707 | 4.47 | 0.0000 |
Interpretation: Extended Illustration

- Signs? Related to z scores.
- Hypothesis testing: z-ratio is $\hat{\beta}/\text{s.e.}(\hat{\beta})$.
- 95 percent confidence interval approximately $\hat{\beta} + -1.96(\text{s.e.})$.
- Usual rules apply (and usual caveats).
- I advise against using stars. Why?
- Turn to interpretation.
Interpreting the Model

- Consider probabilities first.
- Useful to compute tables of probabilities.
- e.g. what is $\Pr(y = 1 \mid \text{profile})$?
- Non-latino, low-education, low-income, Republican?
- $x_1 = -1, \ x_2 = 3, \ x_3 = 1, \ x_4 = 0$
- $\Pr(y = 1 \mid Z) = .47 (z = -.074)$
- Same scenario, but for a Democrat?
- $\Pr(y = 1 \mid Z) = .65 (z = .39)$
- Almost a .20 difference attributable to partisanship.
- But be careful.
Assume binary response is Bernoulli distributed.

The PMF:

\[f(y_i | x_i) = p_i^{y_i}(1 - p_i)^{1 - y_i} \]

\[p_i = F(x_i' \beta) \] (i.e. the probabilities assume some distribution function.)

Since we like to work with log-likelihoods, the “generic” log-likelihood is:

\[\log L(\beta) = \sum_{i=1}^{N} \{ y_i \log F(x_i' \beta) + (1 - y_i) \log(1 - F(x_i' \beta)) \}. \]

MLE:

\[\frac{\partial \log L}{\partial \beta} = \sum_{i=1}^{N} \left\{ \frac{y_i}{F_i} F'_i x_i - \frac{1 - y_i}{1 - F_i} F'_i x_i \right\} = 0 \] (7)
Often with binary response, we center on logit or probit.

Log-likelihood redux:

\[
\log L(\beta) = \sum_{i=1}^{N} \{y_i \log \hat{p}_i + (1 - y_i) \log \hat{p}_i \}.
\]

For logit, \(\hat{p}_i = \Lambda(x_i' \hat{\beta}_{\text{Logit}}) \)

For probit, \(\hat{p}_i = \Phi(x_i' \hat{\beta}_{\text{Probit}}) \)

\(\Lambda \) and \(\Phi \) were previously defined.
Likelihood

- First order conditions (logit):
 \[
 \sum_{i=1}^{N} (y_i - \Lambda(x'_i \beta))x_i = 0
 \]

- First order conditions (probit):
 \[
 \sum_{i=1}^{N} w_i(y_i - \Phi(x'_i \beta))x_i = 0
 \]

 - \(w_i \) is a weighting factor necessary for probit.
Next Time

- Interpretation and more on likelihood.
- Goodness-of-fit.